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CPG-Based Manipulation with Multi-Module
Origami Robot Surface

Yuhao Jiang1, Serge El Asmar1, Ziqiao Wang1, Serhat Demirtas1, and Jamie Paik1

Abstract—Robotic manipulators often face challenges in han-
dling objects of different sizes and materials, limiting their
effectiveness in practical applications. This issue is particularly
pronounced when manipulating meter-scale objects or those
with varying stiffness, as traditional gripping techniques and
strategies frequently prove inadequate. In this letter, we introduce
a novel surface-based multi-module robotic manipulation frame-
work that utilizes a Central Pattern Generator (CPG)-based
motion generator, combined with a simulation-based optimization
method to determine the optimal manipulation parameters for a
multi-module origami robotic surface (Ori-Pixel). This approach
allows for the manipulation of objects ranging from centimeters
to meters in size, with varying stiffness and shape. The optimized
CPG parameters are tested through both dynamic simulations
and a series of prototype experiments involving a wide range
of objects differing in size, weight, shape, and material, demon-
strating robust manipulation capabilities.

Index Terms—Soft Robot Applications; Modeling, Control, and
Learning for Soft Robots; Multi-Robot Systems; Origami Robot;
Surface Manipulation; Central Pattern Generator.

I. INTRODUCTION

ROBOTIC manipulation has made significant strides in
recent years, leveraging advanced control and planning

algorithms to demonstrate a variety of automated and precise
tasks. Traditional robotic manipulators, typically employing
robotic arms and grippers, have shown remarkable versatility
in handling objects of different materials and shapes [1]–
[3]. When combined with advanced learning-based control
strategies [4], these systems can perform intricate tasks such as
in-hand manipulations [5]–[7], teleoperation [8], [9], dynamic
stabilization [10], dynamic throwing [11], and dressing [12].

Traditional robotic grippers excel in their designed appli-
cations but often face scalability challenges when handling
objects of varying types and sizes [13]. For instance, “Gripping
by Actuation” approaches effectively handle convex objects
but show limitations with deformable materials [14]. While
controlled-stiffness grippers [15], [16] and grippers with inte-
grated adhesion [17], [18] offer unique advantages for specific
object types, achieving versatile manipulation remains an open
challenge, particularly for objects at meter-scale and with
diverse material properties.
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Fig. 1: Conceptual overview. (a) Robot setup; (b) experiments
demonstrating the system’s versatility for manipulating various
objects: (i) 300×300 mm acrylic plate, (ii) 200×200 mm wood
plate, (iii) 300×300 mm acrylic plate with a slender foam
cylinder loosely positioned on top, (iv) 1000×300 mm acrylic
plate weighing 1 kg, (v) 400×400 mm Polo shirt weighing
280 g, and (vi) 250×270 mm Trilby hat weighing 55 g.

To address these challenges, researchers have explored al-
ternative approaches such as dynamic planar robotic surfaces.
These surfaces, often using arrays of 1-DoF pins or more
complex mechanisms like delta robots, have shown promise
in manipulating various objects [19]–[24]. However, such
systems usually require a significant number of actuators and
sophisticated control methods, which limit their applications.
Other novel actuators, including soft pneumatic actuators [25],
[26], ciliary actuators [27], and liquid crystal elastomers [28],
have also been investigated to address these limitations. Nev-
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ertheless, these approaches have yet to fully overcome the
challenges posed by larger objects or flexible materials.

Central Pattern Generators (CPGs) are widely used for
generating rhythmic signals in robotic locomotion, simplifying
control and reducing actuation complexity in systems like
bipedal [29], [30], quadrupedal [31]–[33], and swimming
robots [34], [35]. However, their use in robotic manipulation
remains limited.

In this letter, we introduce a novel framework for manip-
ulating objects of diverse sizes and stiffness, ranging from
centimeters to meters, using the previously developed multi-
module origami robotic surface - Ori-Pixel [36] with the
surface-based manipulation concept [37]. This approach com-
bines a collective CPG-based manipulation motion generator
with simulation-based optimizations. As shown in Fig. 1(a),
our method utilizes the Canfield parallel origami robot, which
offers three degrees of freedom: Z-axis translation and rotation
around the X and Y axes. By arranging these robots in a
5×5 multi-module array, we enable versatile manipulations
including fast and smooth translations and rotations for objects
of varying scales and stiffness.

The key challenge in controlling this platform lies in its high
dimensionality, with 75 degrees of freedom (DoF) across the
array. While this high-DoF configuration provides exceptional
flexibility and precision for complex, localized manipulation
tasks, it also presents significant challenges for control syn-
thesis. Traditional control methods struggle with the complex
kinematics and actuation coordination, while learning-based
approaches face difficulties due to the vast search space, chal-
lenges in collecting comprehensive training data, and limited
adaptability to hardware modifications. For instance, adding
or removing a row of modules would typically necessitate
complete model retraining in learning-based methods. To ad-
dress these challenges, we introduce a CPG-based method that
strategically groups the modules and represents end-effector
motions using synchronized sinusoidal functions, effectively
reducing the control optimization targets from 75 individual
actuator positions to only 8 parameters. This reduction dra-
matically simplifies the optimization space, improving both
the search efficiency for optimal control parameters and the
system’s real-world applicability. Moreover, our CPG-based
approach offers inherent flexibility to platform modifications,
as the underlying control principles remain valid regardless of
the specific module configuration.

The proposed framework employs simulation-based opti-
mization of the CPG parameters to generate effective motion
patterns across the robotic surface. Through dynamic simula-
tions and prototype experiments, we demonstrate the frame-
work’s capability to translate and rotate objects of varying
sizes and materials, from rigid wood and acrylic to flexible
fabrics. Fine-tuning objective functions allows our CPG-based
controller to operate in two distinct modes - fast manipula-
tion and smooth, stable manipulation - with the latter being
particularly beneficial for delicate items sensitive to sudden
positional and orientational changes, making it an adaptable
solution for a broad spectrum of manipulation tasks.

The contributions of this letter are summarized as follows:
1) A novel CPG-based motion generator is developed for
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Fig. 2: Kinematic model, workspace, and simulation setups.
(a) Kinematic model of the Canfield origami structure; (b) non-
monotonic behavior of end-effector’s workspace from lower to
higher Z-height configurations, first expanding then contract-
ing; (c) single module model for simulation; (d) simulation
contact model; (e) 5×5 multi-module model for simulation.

manipulations using multi-module robot surface, en-
abling various collective manipulation modes for objects
of diverse sizes and stiffness.

2) A simulation-based optimization framework is then pro-
posed to guide selecting optimal CPG parameters across
a range of object settings and manipulation modes.

3) Dynamic simulations and prototype experiments are
conducted to validate the proposed motion design and
optimization framework, demonstrating effective ma-
nipulations of objects with varying sizes, shapes, and
stiffness.

II. KINEMATIC MODELING AND DYNAMIC SIMULATION

This section discusses the kinematic modeling and
workspace analysis of the Ori-Pixel platform, emphasizing
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its application in generating manipulation motion patterns. A
dynamic model is then developed to simulate the dynamic
behavior of the origami robot surface using MuJoCo [38].

A. Kinematic model and workspace analysis

This work uses a 5×5 grid of 25 3-DoF Canfield
origami robots. Based on prior kinematic analyses [39],
[40], the structure (Fig. 2(a)) consists of revolute joints
(B1, B2, B3, R1, R2, R3) and ball joints (M1,M2,M3). All
linkages (l1, l2, l3, l

′

1, l
′

2, l
′

3) are 30 mm long, with B1,2,3 and
R1,2,3 equidistant (20.21 mm) from centers OB and OR re-
spectively. Actuation angles θi, i ∈ 1, 2, 3 are determined from
the top plate’s pose parameters (δ, ψ,H) through:

θi = 2 · arctan(ti), θi ∈ [0,
π

2
], (1)

where:

ti =
−bi ±

√
b2i − 4aici
2ai

,

ai = (r − l)(sin(
ψ

2
) · cos(δ − θi))−

r0
2
,

bi = 2l · cos(ψ
2
),

ci = (r + l)(sin(
ψ

2
) · cos(δ − θi))−

r0
2
,

r0 =
H

sin(π2 − ψ
2 )
.

(2)

The end-effector’s inclination angle (ψ) and height (H) are
key parameters constrained by the system’s kinematics. As
depicted in Fig. 2(b), analysis of their workspace across three
height configurations (h ∈ [10, 25], [25, 40] and [40, 55] mm)
reveals that the workspace first expands from lower to medium
heights, then contracts at higher configurations. The workspace
shows asymmetry across ψ and δ ranges, necessitating separate
optimizations for each direction of manipulations.

B. Dynamic Simulation

The single-module model derived from the kinematic anal-
ysis is then developed for dynamic simulations in MuJoCo
with a timestep of 5× 10−4 s using the default semi-implicit
Euler integrator. As illustrated in Fig. 2(c), the revolute
joints B1, B2, B3 are connected to the base of each lower
linkage, with their axes offset by 60 degrees from one another.
The ball joints M1,M2,M3 link the lower linkages to the
upper linkages, while the revolute joints R1, R2, R3 connect
the upper linkages to the top plate, sharing the same axis
orientation as the joints B1, B2, B3. A spring-damper model
is applied to each joint, with a spring stiffness of kp = 0.2
N ·m/rad and a damping coefficient of d = 0.1 N ·m · s/rad.
The dimensions and masses of the linkages and top plates are
derived from the same design parameters used in the prototype,
as presented in [36]. Three motor actuators are implemented
in position control mode with position feedback gain kp = 5
and connected to the joints B1, B2, B3.

The single-module model is then replicated to form the
5×5 module grid surface with identical distributions and

dimensions as the prototype design presented in [36]. The
multi-module MuJoCo model is depicted in Fig. 2(e). This
model includes 75 motor actuators, and all top plates feature
contact models to simulate interactions with objects using
soft contact dynamics with a solver tolerance of 10−6 and
a maximum 30 iterations per timestep. As illustrated in Fig.
2(d), the contact model incorporates sliding and rolling friction
along the X and Y axes, and torsional friction along the Z axis.
The sliding friction coefficient, µslide, and the rolling friction
coefficient, µroll, are calibrated to 0.5 and 0.01, respectively.

III. CPG MOTION PLANNING AND OPTIMIZATION FOR
MANIPULATIONS

This section presents a novel CPG-based motion generation
framework with simulation-based optimizations that, while
demonstrated on Ori-Pixel platform, offer broad applicability
across robotic systems. The proposed framework represents
the first implementation of surface manipulations capable of
handling diverse object geometries and stiffness. The follow-
ing details the CPG parameter design, and the optimization
framework across different manipulation modes.

A. CPG-based Manipulation Motion Planning

The CPG-based manipulation motion of a single 3-DoF
Canfield origami robot mimics walking gait generation, con-
sisting of three steps: object engagement through top plate
lifting, object pushing through plate tilting, and plate retraction
for disengagement, as shown in Fig. 3(a).

Sinusoidal functions are widely used in defining CPGs
due to their smooth, periodic nature, which makes them
ideal for generating stable and natural locomotion [41], [42].
Their simplicity enables efficient computation and easy phase
adjustments, allowing synchronized movements that support
coordinated, adaptive, and efficient control.

In this work, a sinusoidal-based CPG controller is developed
to generate synchronized manipulation movements on the top
plate of the robotic modules. These movements are described
by coupled sinusoidal functions governing the height of the
module’s top plate, H , and the inclination angle of the top
plate, ψ, as illustrated in Fig. 3(a). These two functions are
coupled together to synchronously control the manipulation
movements of the single module. The time-dependent varia-
tions of H and ψ are expressed as:

H(t) = hamp sin(2πf · t+ ϕ) + h0, (3)
ψ(t) = ψamp sin(2πf · t+ ϕ+ σ) + ψ0, (4)

where hamp denotes the amplitude of the height variation,
f is the frequency of motion, σ represents the phase shift
coupling between H and ψ, h0 and ψ0 indicate the height
and the inclination angle, respectively, of the top plate at its
natural resting position, as depicted in Fig. 3(a). Additionally,
ϕ represents the inter-group phase shift used to coordinate
multiple groups of modules for effective manipulations.

As shown in Fig. 3(a), Eqs. (3) and (4) together define the
motion pattern. The phase shift σ determines the inclination
angle ψ when the top plate engages with the object, which
dictates the manipulation direction. Specifically, if the first
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Fig. 3: CPG motion plan and inter-group motion plan. (a) Single module motion plan; (b) multi-module manipulation motion
plan. (c) inter-group motion planning for translation manipulations; (d) motion planning for clock-wise rotation manipulation.

contact occurs during the tilt push I phase, where σ ∈ [0, π),
the manipulation direction is toward the left-hand side; if
the first contact occurs during the tilt push II phase, where
σ ∈ [−π, 0), the direction shifts to the right-hand side.
Furthermore, the phase shift σ influences both the floating and
tilting ranges of the object during manipulation, playing a key
role in balancing the trade-off between speed and smoothness
in the overall performance. This trade-off will be further
studied during the optimization process in Section III-B.

While single modules can complete manipulation cycles
(Fig. 3(a)), additional module support during plate retraction
is needed to prevent backward slippage. Thus, modules are
divided into two groups using Eqs. (3) and (4) with identical
parameters except for an inter-group phase shift ϕ. As depicted
in Fig. 3(b), this coordination enables simultaneous pushing
and supporting motions for effective manipulations.

B. Collective motion planning for manipulations using multi-
module robotic surface

The inter-group motion plan developed for translational
manipulations on the Ori-Pixel platform divides the modules
into two diagonal groups, with their motion generated by
the CPG described in Section III-A, as depicted in Fig. 3(c).
These groups are synchronized through the inter-group phase
shift term, ϕ. The diagonal symmetric configuration maintains
object orientation during movement by applying forces without
rotational torque, ensuring robust and stable motion.

The direction of translational manipulation is determined
by two parameters: the azimuth angle δ (which defines the
manipulation axis: δ = 0 degree for Y-axis and δ = 90 degree
for X-axis as shown in Fig. 2(a) and Fig. 3(c)), and the in-

group phase shift σ (which determines direction along the
chosen axis: σ ∈ [0, π) for positive and σ ∈ [−π, 0) for
negative direction, as detailed in Section III-A). Together, these
parameters enable omni-directional planar manipulation.

The rotational manipulation plan coordinates modules’
translational movements in different directions. Objects must
contact at least two by two top plates. Two module groups
operate with ϕ = π phase shift. As shown in Fig. 3(d), Group
1 moves along X-axis (positive in top-left, negative in bottom-
right), while Group 2 moves along Y-axis (negative in top-
right, positive in bottom-left) for clockwise rotation. Counter-
clockwise rotation reverses these directions while maintaining
ϕ, ensuring continuous rotational manipulation.

In addition to the motion plans, the top plate’s effective
contact ratio (Scontact/Splate) is crucial for manipulations, where
Scontact represents the object-covered area and Splate the total
plate area. Modules are activated when this ratio exceeds
a threshold ϵ, otherwise returning to rest. This threshold,
analyzed during optimization, ensures effective manipulation
without obstruction. The complete control framework is illus-
trated in Fig. 4(a).

C. Optimization Framework for Manipulation Motions

A simulation-based optimization framework is developed to
identify the optimal CPG parameters for different manipulation
modes and objects, using the motion planned in Section III-B.
The complete process is elaborated in Fig. 4(b).

The proposed framework utilizes the simulation model
from Section II-B, integrated with an evolutionary Bayesian
hyperparameter optimizer [43] to identify optimal parameter
sets for different manipulation modes. The optimization search
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Fig. 4: Control and Optimization Frameworks. (a) Control framework for CPG-based manipulation; (b) optimization
framework for CPG parameters.

space spans eight parameters hamp, ψamp, f, h0, ψ0, ϕ, δ, ϵ from
Equations (3) and (4). The amplitude and frequency ranges
in Table I were bounded by our servo motors’ physical
limits. The initial height h0 and orientation ψ0 ranges were
determined by the prototype’s geometric design and kinematic
workspace analysis as in Section II-A, while the phase param-
eters were constrained to ensure smooth transitions between
motion states. During the optimization process, the object is
positioned at the center of one side of the robotic surface. The
modules are commanded to move for 5 seconds following the
control protocol outlined in Fig. 4(a), using the parameters
suggested by the optimizer. The object’s travel distance, Z-
axis displacement, and rotation angles during the movement
are evaluated using a cost function, which serves as reward
feedback for the optimizer.

TABLE I: Optimization Search Space

Parameter Symbol Search Space Unit
Height amplitude hamp [0.005, 0.04] m

Inclination angle amplitude ψamp [0.35, 0.79] radian
Frequency f [0.1, 0.8] Hz

Resting height h0 [0.02, 0.04] m
Resting inclination angle ψ0 [−0.26, 0.26] radian

Height-inclination phase shift σ [0, π] or [π, 2π] radian
Inter-group phase shift ϕ [0, 2π] radian

Top plate contact threshold ϵ [0.1, 0.5] -

A generalized cost function J is constructed to assess
manipulation performance, incorporating various manipulation
objectives. As shown in Eq. (5), the cost function accounts
for the object’s absolute averaged translational speed v, the
absolute averaged yaw speed ω, the max roll (η) and pitch
(ρ) angles, as well as the max displacement in z-direction
throughout the manipulation process. The weights {α, β, γ, ς}
can be tuned to prioritize different manipulation objectives.

J = α · v + β · ω

+ γ ·
(
max
t
η(t) + max

t
ρ(t)

)
+ ς ·max

t
z(t).

(5)

For fast manipulations, where only the object’s average
manipulation speed v is considered, the weights are set to
{α, β, γ, ς} = {−1, 0, 0, 0}, ensuring that the optimizer fo-
cuses on maximizing the manipulation speed. In contrast, for
smooth manipulations aimed at minimizing rotation, tilting,
and shaking, the weights are adjusted to {α, β, γ, ς} =
{−0.2, 0.3, 0.3, 0.3}, which directs the optimizer to prioritize
reducing pose variations during the manipulation while still
maintaining a reasonable speed. For rotational manipulations,
the weights are set to {α, β, γ, ς} = {1,−1, 0, 0}, penalizing
translational motions while rewarding yaw rotations.

Using the optimization framework and simulation envi-
ronments from Section II-B, we optimized CPG parameters
(Table I) for various manipulation motions (omnidirectional
planar translations in fast/smooth modes and pure rotations).
Due to the asymmetric workspace as discussed in Section II-A,
each case was optimized separately. For fast modes, we fixed
ϕ = π to maximize contact time, while for smooth modes,
ϕ was optimized to control contact transitions and minimize
vertical displacement. The framework converged in 30 minutes
on an AMD Ryzen Threadripper 7960X with 128GB RAM.
Results are shown in supplementary video 1.

IV. CPG-BASED MANIPULATIONS ON PROTOTYPE

This section describes the laboratory experiments conducted
with the Ori-Pixel robotic surface to manipulate various ob-
jects using the optimized CPG motions from Section III.
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(b) Averaged manipulation velocity from simulation for various object masses and widths using the Ori-pixel module spacing
of 120 mm as a reference unit; (c) averaged manipulation velocity from simulation with various contact friction coefficients.

A. Experiment Setup

The Ori-Pixel robotic surface, comprising 25 modules each
actuated by three Dynamixel XL-320 servos operating at 20 Hz
in position mode, is used for laboratory experiments (Fig.
1(a)). A Vicon Vero motion tracking system provides real-
time object pose data for module activation control following
Fig. 4(a). Experiments are conducted with objects of varying
size, weight, shape, and stiffness, as listed in Table II.

B. CPG-Based Manipulation Experiments on Ori-pixel

The optimized CPG parameters are applied to manipu-
late a spectrum of objects as listed in Table II. The system
successfully manipulated objects ranging from a small plate
(ii) to a much larger plate (iv), demonstrating the optimized
motion’s ability to handle a wide size range. The system
also successfully manipulated objects with flexible materials
and irregular shapes (v, vi) where position tracking becomes
challenging. The platform operates in open-loop mode, with
all modules activated following optimized CPG motions with-
out position feedback. These experiments demonstrate that
motions derived using the proposed framework can success-
fully handle objects of varying sizes, shapes, and stiffness,
showcasing the robustness and versatility of the proposed

TABLE II: Properties of Tested Objects

Index Shape Material Size (mm) Mass (g) Tested Modes
i Plate Acrylic 300×300 254 Fast, Smooth
ii Plate Wood 200×200 172 Fast, Smooth
iii Cylinder Foam �36×140 9 Smooth
iv Plate Acrylic 1000×300 1000 Fast
v Polo shirt Fabric 400×400 280 Fast
vi Trilby hat Straw 270×250 55 Fast

manipulation strategy. Complete documentation is available in
supplementary video 2.

We evaluated the fast and smooth manipulation modes
using object i as depicted in Fig. 5(a). Fast manipulation
achieved higher velocities (30 mm/s Y-direction, 25 mm/s X-
direction) compared to smooth manipulation (20 mm/s Y-
direction, 17 mm/s X-direction). However, smooth manipula-
tion demonstrated superior stability with lower Z-direction dis-
placement (averaged standard deviation: 3.03 mm vs 7.05 mm)
and rotation angles (averaged standard deviation: 0.0091 rad
vs 0.0133 rad). To demonstrate stability, we successfully ma-
nipulated object i while supporting an unrestrained object
iii (Figure 1(b)(iii)). Pure rotational tests achieved average
angular velocities of 0.079 rad/s clockwise and 0.063 rad/s
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counterclockwise. All experiments are documented in supple-
mentary video 3.

C. Sim-to-real Analysis

To analyze the sim-to-real discrepancy, we conducted sim-
ulations using object i with optimized CPG-based control
parameters and compared them with experimental results,
as shown in Fig. 5(a). The simulation demonstrates strong
alignment with the actual dynamic behavior during manipula-
tion, though some differences were observed—specifically in
rotation data during translation modes and position data during
rotation modes. These discrepancies are primarily attributed to
actuation delays between servos in the physical platform and
natural variations in object placement during trials.

Despite these differences, the control parameters optimized
in simulation transferred effectively to real-world implementa-
tion, validating the robustness of our approach. The observed
sim-to-real deviation is within acceptable bounds, as the CPG
gaits from simulation consistently yield effective results in
prototyping tests, further supporting the strong correlation
between simulation and real-world performance.

D. Conclusion

This section evaluated the CPG-based manipulation mo-
tions derived from the simulation-based optimization process
through prototype experiments. The experiments demonstrated
high-fidelity sim-to-real transfer and validated the proposed
framework by successfully manipulating objects of various
size, shape, and stiffness, while executing fast and smooth ma-
nipulation modes to meet different performance requirements.

V. DISCUSSION

This section analyzes experimental results to evaluate our
CPG-based manipulation framework. We demonstrate the
framework’s robustness across varying object properties (mass
and size) and contact friction conditions, followed by a dis-
cussion of its key assumptions and limitations.

A. Robustness Analysis

For robustness analysis of our proposed CPG-based manip-
ulation framework, we conducted a series of simulations with
the Ori-pixel platform serving as our experimental testbed. We
analyzed box-shaped objects with a fixed height of 50 mm but
varying mass and width. The mass ranged from 50 g to 950 g
in 150 g increments, and using the Ori-pixel module spacing of
120 mm as a reference unit, we varied object widths from 1.25
to 8.75 module spans in 1.25-span increments. We simulated
translational manipulations in all directions using fast and
smooth modes, with results shown in Fig. 5(b). The analysis
reveals that manipulation performance strongly correlates with
module coverage, where objects spanning 2×2 modules result
in manipulation that is more sensitive to object properties and
achieves lower velocities, while coverage of 3×3 modules
or more enables robust, high-velocity manipulation. This im-
proved performance with larger coverage stems from better
load distribution across modules, which helps mitigate the

velocity reduction effects from increasing object mass. These
results demonstrate the framework’s robustness across a range
of object masses and sizes.

We then investigated the effect of contact friction between
the object and the platform. Using the same simulation setup
with object i as in Table II, we varied the friction coefficient
from 0.02 to 1 in 0.02 increments, testing all directional trans-
lational manipulations in both fast and smooth modes. The av-
erage velocities are shown in Fig. 5(c). At friction coefficients
below 0.3, manipulation velocity shows unstable saturation
behavior. Above 0.3, the velocity stabilizes, indicating robust
performance. The green shaded region (0.3-0.9) highlights
that our proposed manipulation method works effectively with
common materials ranging from acrylic (friction coefficient
0.4) to rubber (friction coefficient 0.9).

B. Assumptions and Limitations

The manipulation method presented here demonstrates ro-
bust performance across objects with diverse shapes, sizes,
weights, and materials. For implementation on the current Ori-
pixel platform, we assume objects have a flat contact surface,
are larger than 150 mm to effectively cover more than 2×2 tiles
and prevent falling into gaps between modules, and weigh less
than 1500 g due to actuator capabilities.

As for the limitations of the proposed framework, the robust
manipulation performance requires friction coefficients above
0.3, though this encompasses most common materials from
acrylic to rubber. Additionally, the framework has a resolution
limitation requiring objects to span at least 2×2 tiles to
maintain consistent manipulation forces.

VI. CONCLUSION AND FUTURE WORK

This letter introduces a novel manipulation framework that
uses a CPG-based motion generator to enable manipulation
motions on a multi-module origami robotic surface. It also
presents a simulation-based optimization method to find the
best CPG parameters for various manipulation goals. The
optimized manipulation motions are evaluated using both
dynamic simulations and prototype experiments. This letter
also showcases a series of demonstration experiments using
the optimal CPG motions to manipulate objects of different
sizes, shapes, and stiffness, highlighting robust and versatile
manipulation across a wide range of objects.

In future work, reconfigurable module layouts will be inves-
tigated to enhance the platform’s versatility. This improvement
aims to expand the range of objects that can be effectively ma-
nipulated. Additionally, we plan to explore hybrid frameworks
that combine learning-based methods with CPG to balance
adaptability and control efficiency. Furthermore, we plan to ex-
plore hybrid frameworks that combine learning-based methods
with CPG to enable more dynamic and complex manipulation
tasks while maintaining control efficiency.
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