
Compensating for Material Deformation in Foldable Robots via Deep Learning – A
Case Study

Mohammad Sharifzadeh1,∗, Yuhao Jiang2,∗, Amir Salimi Lafmejani3,∗, Daniel M. Aukes1

Abstract— Foldable, origami-inspired, and laminate mech-
anisms are highly susceptible to deformation under external
loading, which can lead to position or orientation errors if
idealized kinematic models are used. According to dimensional
scaling laws, laminate devices can often be treated as rigid
bodies at millimeter and smaller scale deformations. However,
foldable mechanisms enter the territory of soft robots at larger
scales. In this paper, we show the effect of external loads applied
to a laminate, 2-DOF parallel robot and the corresponding
errors during a pointing task. We then present two control
methods, based on deep learning, that compensates for errors
caused by the material deformation in foldable robots. For each
proposed control method, a Deep Neural Network (DeepNN) is
trained to learn the end-effector’s deformation model in no-load
and loaded conditions. A DeepNN called an updating network is
trained and applied in real-time using measured sensor data, in
order to transfer updated weights into another DeepNN called
the target network. The target network generates control signals
with the aim of compensating for the end-effector’s error in
tracking a desired trajectory. We evaluate our proposed control
methods when applied to a laminate robotic end-effector under
different external loading conditions in tracking spiral paths.
The experimental results show the effectiveness of our proposed
control methods in compensating for material deformation in
foldable robots.

I. INTRODUCTION

Laminate fabrication techniques provide an affordable and
rapid alternative to traditional rigid robot prototyping, and
have been applied in a variety of micro- and millimeter-
scale robotic mechanisms. However, the use of long and
slender beams within laminate systems can produce large
deformation in the robot’s end-effector even when stiffer
materials are used in fabrication. This large deformation of
the end-effector causes significant errors in accomplishment
of tasks such as position stabilization and path tracking. To
address this issue, parallel mechanisms are often used in
laminate designs in order to achieve higher stiffness of the
robot. Unlike serial robots, parallel robots allow the actuators
to be mounted proximal to the end-effector, which in turn

1Mohammad Sharifzadeh and Daniel Aukes are with the Polytechnic
School, Fulton Schools of Engineering, Arizona State University, Mesa,
AZ, 85212, USA sharifzadeh@asu.edu;danaukes@asu.edu

2Yuhao Jiang is with School for Engineering of Matter, Transport and
Energy, Fulton Schools of Engineering, Arizona State University, Tempe,
AZ, 85281, USA yuhao92@asu.edu

2Amir Salimi Lafmejani is with School of Electrical, Computer and En-
ergy Engineering, Fulton Schools of Engineering, Arizona State University,
Tempe, AZ, 85281, USA asalimil@asu.edu

∗These authors contributed equally to the paper.
(Corresponding author: Daniel M. Aukes)
This work is partially supported by the National Science Foundation

Grant No. 1935324.
Supplementary video: https://youtu.be/32UFB4Ziq0I

Real TrajectoryDesired Trajectory

-0.4 -0.2 0 0.2 0.4 0.6
X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
(m

)

Deformed

Undeformed

Target area in
pointing task

Deflected point

Desired point

(a)

(b)

(c)

(d)

Fig. 1. (a) The effect of end-effector deviation caused by a load in a
pointing task. (b) Illustration of the tracked path in tracking of a desired
spiral trajectory caused by a load on the robot’s end-effector. (c) The 2-DoF
laminated foldable parallel robot. (d) The robot’s workspace (blue dots) and
the periodical desired spiral trajectory (red line) that is used in the rest of
the paper.

lowers the robot’s structure load on its end-effector. Despite
the improvements in stiffness, using traditional kinematic
formulations that neglect link flexibility would be inaccurate
to describe robot’s motion especially when the robot works
under heavy loads or when its links are fabricated in large
scales. The same phenomenon is observed in the field of
soft robotics, where computational solutions to control the
position of robot’s end-effector under load are based on
dividing the material into finite number of small elements.
Due to its high computational complexity, this approach
is intractable in real-time implementations. This issue can
be solved by creating reduced-order Finite Element Analy-
sis (FEA) models. These models have a limited number of
cases that are used within controllers, yet it is an expert tool,
the order of model reduction affects the precision and relies
on domain expertise in order to successfully implement and
optimize them on each new design [1]–[4].

Soft robots offer the possibility to extend the benefits
of robotics to applications that have not previously been
approachable with rigid robots [5]. However, further progress
of soft robots will also increasingly depend on advancements
in feedback control, machine intelligence, and computational
modeling since conventional model-based control methods
are not applicable to soft robots with infinite number of
degrees-of-freedom [6]. Various control approaches for con-
trol of soft robots have been proposed and validated in the
literature. One of the most precise approaches is to employ
FEA methods. In [7], model order reduction of FEM using

https://youtu.be/32UFB4Ziq0I


snapshot proper orthogonal decomposition is proposed in or-
der to achieve a reduced-order model with lower calculation
effort. The control methods based on Piecewise Constant
Curvatures (PCC) [8] for modeling configuration of soft
robots are widely used in numerous studies. A linear time-
varying Gaussian model is proposed in [9] for dynamic
modeling. This model alongside a Linear Quadratic Regula-
tor (LQR)-based Gaussian controller and a Kullback-Leibler
divergence policy is used to stabilize the robot’s end-effector
to a desired position after several iterations while accounting
for both dynamics control and path planning. The control
of a soft robotic arm driven by a Shape-Memory Alloy
(SMA) coil has been studied in [10] where they employ
Proportional Integral Derivative (PID) controller when the
curvature is measured by Hall sensors under assumption
of constant curvature of each segment. In [11] dynamic
control of a planar soft robotic arm interacting with the
environment has been presented by the assumption of PCC
and modeling each segment by a rigid limb. This method was
extended to the control of 3D robots in [12] by modeling
each segment as a rigid limb. In both studies the mass,
stiffness, and damping coefficient of each link of the robot
must be experimentally identified. Dynamics of a variable-
length, multi-section, continuum robot has been introduced
and experimentally validated in [13], [14]. A combination of
PCC with FEA model-reduction policy is proposed in [15] in
which the results show that this combination provides more
precise models than using PCC models whereas less accurate
models when using FEA methods.

In order to deal with computational complexity of existing
methods for modeling and control of foldable robots, many
studies investigated to use neural networks and specifically
DeepNNs into their control approach to learn the highly-
nonlinear behavior of robots. Several successful deployment
of neural networks into control approaches are in applications
such as underwater vehicles [16], ships [17], and robotic
manipulators [18]–[21]. Given the complexity of these non-
linear robotic systems, traditional linear models results in
inaccurate models. Neural networks offers characterization of
these nonlinearities directly through data sampling during the
learning process. While neural networks have been studied in
depth for analyzing both forward kinematic and inverse kine-
matic problems of rigid robots [22]–[24], to the knowledge
of the authors, a closed-loop controller based on DeepNNs
has not been introduced for analysis and compensation of
the material deformation in foldable and soft robots.

Figure 1 shows an example of the effect of external
loading on the end-effector of a 2-DoF parallel robot with
foldable joints and flexible links in a potential pointing task.
Figure 1(a) illustrates the end-effector of the robot in two
static conditions, namely no-load and loaded. We can see
the deflection of the loaded end-effector from its no-load
position. In Figure. 1(b), we show the effect of the end-
effector deflection in tracking of a desired spiral trajectory,
which results in large amount of errors between the desired
trajectory (red) and the tracked trajectory (blue).

In contrast with computational approaches that are used

to solve soft robotic control problems, the objective of this
paper is to investigate alternative strategies that simultane-
ously allow us to represent and solve for the complex inverse
kinematics of parallel mechanisms and the position error due
to deformation under load for moderately-compliant lami-
nates. This is possible because the motion of laminate robots
is still primarily dictated by the geometric relationships of
flexure hinges rather than the deformation of stiffer links,
making traditional, rigid-link models a good starting point
for representing these mechanisms. This paper presents two
different methods based on DeepNNs for data-driven control
of foldable robots. The main contributions of this paper are
as follows:
• We propose two control methods, called model-free

and model-based methods, based on DeepNNs for
compensating the deformation of foldable robot’s
end-effector.

• Our proposed control methods are computationally
tractable which enables the real-time training of the
DeepNN and implementation of the controllers.

• Our proposed model-free control method does not
require any priori model of the robot, which allows
to use this method when the derivation of an accurate
kinematic model the foldable robot is a challenging task.

In Section II, we first introduce the 2-DoF foldable robot
shown in Figure. 1(c,d) and derive analytical formulations
for the robot’s inverse and forward kinematics. In Section III,
we provide a workflow in three main stages which describe
data sampling to create datasets required for training of
DeepNNs, tuning the hyper-parameters of DeepNNs, and
implementation of closed-loop controllers. In Sections IV
and V, we respectively present our proposed model-based
and model-free control methods based on DeepNNs and
provide experimental implementation results of using these
two control methods in trajectory tracking by the 2-DoF
foldable robot.

II. 2-DOF LAMINATED PARALLEL ROBOT

Figure 1(d) demonstrates the 2-DoF laminated parallel
robot that we used as a case study to evaluate our proposed
control approaches in tracking of a desired spiral trajectory
shown in Figure. 1(c). This foldable parallel robot was orig-
inally introduced as a 2-DoF spherical orienting mechanism
in [25], [26]. The design of robot is based on the kinematic
synthesis analysed by Ouerfelli et al. that maximizes its
workspace [27]. In [28], we have developed a small-scale
version of this robot as a camera stabilizer while taking
advantage of laminated techniques in its design procedure. In
this paper, we extend our previous study by introduction of
a larger-scale version of the foldable robot that also permits
deformation under external load on its end-effector. This
robot has been constructed via a laminate fabrication process
similar to the procedure described in [29], [30]. The final
prototype of the robot was made of 0.762 mm fiberglass



sheets as the rigid layer and 0.127 mm polyester sheet as the
flexible layer. A heat-activated acrylic adhesive from Drytac1

has been used to bond layers. The actuators of the robot are
two XM430 Dynamixel DC servo motors. The two custom-
made Nylon 3D-printed horns are responsible for attaching
and aligning mechanism hinges to the servo motors. The
horns essentially act as a safety coupling in the mechanism.
Moreover, the chassis has been built from acrylic and 3D-
printed parts.

A. Inverse Kinematics

The inverse kinematics of the robot solves for the angular
position of the robot’s actuators given the orientation of the
robot’s end-effector. Considering the 2-DoF foldable robot
shown in Figure. 1(d) and based on the global axes’ align-
ment with servo actuators, the inverse kinematic equations
of the robot can be written as [27]:

θ1 = arctan(
nynz
n2x + n2z

) θ2 = arctan(
nx
nz

) (1)

where θi are the analytical angular position of i-th actuator
and nx, ny , and nz are the components of the orthonormal
unit vectors on the robot’s end-effector. In a special case
when nz = 0 (a representational singularity), the actuators’
angular positions are assumed to be θ1 = 0 and θ2 = π/2.

B. Forward Kinematics

The mechanism’s forward kinematics provides the orien-
tation of the robot’s end-effector given the angular position
of the robot’s actuators. Accordingly, the forward kinematics
of the 2-DoF foldable robot can be formulated as [27]:

nz =
(
(t1 + t1t2)2 + t22 + 1

)− 1
2

nx = t2nz

ny = (t1 + t1t2)nz,

(2)

where ti = tan(θi){i=1,2}. Considering Eqs. (2), we can
span the 2D space of the robot’s actuators, i.e. θ1 and θ2,
in order to obtain the end-effector workspace as shown
by blue dots in Figure. 1(c). Furthermore, we specify the
desired spiral trajectory such that it lies on workspace of the
robot. This spiral trajectory is used throughout this paper as
the desired path for tracking by the robot and is basically
selected as to entirely traverse the workspace by projection
of the normal vectors of the end-effector on a sphere with
the radius of 1 m.

III. METHODOLOGY

In this section, we describe the step-by-step imple-
mentation procedure of our proposed control methods in a
workflow as: 1) Defining the inputs and ouputs; 2) Sampling
the data under no load condition; 3) Sampling the data
under loaded condition; 4) Designing the DeepNNs; 5)
Training the DeepNNs; 6) Tuning the DeepNNs with hyper-
parameters; 7) Implementing control methods; 8) Evaluating
control methods; 9)Parameter tuning of updating DeepNN.

1Drytac Multi-Heat Adhesive, Drytac, USA

We explain these control methods in detail in the following
sections on model-based control in Section IV and model-
free control in Section V. This procedure is valid for each
control method and is implemented in three main stages
including data sampling, modeling, and control. We explain
each stage in details as follows.

A. Data Sampling

[Step 1: Define input and outputs] The procedure starts
by defining the inputs and outputs (ground-truth data) for
each DeepNN in the control method. Then, we create two
datasets of inputs-outputs. The first dataset consists of a set
of inputs-outputs, where the inputs are different orientations
of the end-effector, q and the outputs are the errors of
the actuators’ angular positions, i.e. ∆θm1 = θm1 − θ1 and
∆θm2 = θm2 −θ2 where θm1 and θm2 are the measured angular
position of the actuators recorded by the actuators’ encoders.
Additionally, we create another set of inputs-outputs. In the
second dataset, the inputs are the same as the inputs of the
first dataset, q, whereas the outputs are the measured angular
positions of the actuators, i.e. θm1 and θm2 . [Step 2: Sampling
data (no-load)] When the inputs-outputs of DeepNNs are
determined, we start sampling the required data when the
robot’s end-effector is in undeformed (no-load) condition.
[Step 3: Sampling data (loaded)] Then, we also sample data
when the robot is in deformed (loaded) with different loading
condition. We note that the sample data of undeformed and
deformed end-effector should span a large portion of the
robot’s workspace. In addition, the dataset is split into three
sets of data, namely train, validation, and test sets.

B. Modeling

[Step 4: DeepNN design] In the modeling stage, we
aim to train two types of DeepNNs. The first type of the
DeepNN learns a mapping between the orientation of the
end-effector represented in quaternions as the inputs and the
the angular position error of the actuators as the ground-
truth outputs. In the second type of DeepNN that learns the
inverse kinematic (IK) model of the robot, the inputs are the
orientation of the robot’s end-effector in quaternions and the
ground-truth outputs are the angular position of the actuators.
We first set the hyper-parameters for each DeepNN. The
hyper-parameters are the number of hidden layers, number of
neurons at each layer, activation functions, learning rate, and
batch size. Moreover, different optimization algorithms are
used for training. [Step 5: Training DeepNNs] Then, we
use the train dataset including shuffled data corresponding
to both undeformed and deformed conditions of the robots
to train the two DeepNNs with different hyper-parameters.
We examined different activation functions such as identity,
logistic regression, tanh, and ReLU. Moreover, we tried
different number of layers from a simple network with one
hidden layer to an extremely DeepNN with 3000 hidden
layers with two powerful optimization algorithms called
ADAM (Adaptive Moment Estimation) and LBFGS (Broy-
den, Fletcher, Goldfarb, and Shanno) in training of DeepNNs.
[Step 6: DeepNN hyper-parameters tuning] By trying

https://www.drytac.com/product/mhamultiheatadhesive/


different hyper-parameters and optimization methods to train
DeepNNs, one can find the best parameters by which the
DeepNN provides an input-output mapping with relatively
less training error, training time, and variance. The identity
as the activation function with LBFGS as the optimization
algorithm results in the best performance of the first type of
DeepNN used in the model-based control method. On the
other hand, this can be achieved when we use ReLU as the
activation function and LBFGS as the optimization algorithm
in the second type of DeepNN in the model-free controller.

C. Control

[Step 7: Control methods implementation] In the control
stage, we can use either model-based or model-free control
methods. In the model-based method, we use the analytical
IK model of the robot described in Eq. (1) to find the desired
actuators’ angular position given the desired orientation of
the robot’s end-effector. However, the model-free control
method does not require the analytical kinematic model of
the robot. As a target network, we employ the first type
of DeepNN in model-based method and second type of
DeepNN in the model-free method. We also use a second
DeepNN namely updating network that is trained in real-time
with measured sensor data in order to back up new weights.
The updating network periodically updates the target network
with these new weights in real-time to prevent the divergence
of the target network’s weights. [Step 8: Control methods
evaluation] Then, we study the performance of control
methods in compensation of the robot’s deformation on the
end-effector using the validation dataset. If the trained target
DeepNN suffers from high variance, the hyper-parameters
must be tuned to avoid over-fitting the training dataset.
[Step 9: Parameter tuning of updating DeepNN] We also
need to find the optimal batch size that results in relatively
minimum training error and training time with the lowest
variance of the model difference between the training error
and validation error. We found 1000 as the best batch size
in our experiments.

IV. MODEL-BASED CONTROL METHOD

In this section, we describe our proposed model-based
control method as well as the experimental implementation
results of tracking the desired spiral trajectory by the robot.

A. Approach

Figure 2(a) shows the block diagram of our proposed
model-based control methods. We note that the target net-
work is pre-trained offline with the train dataset. In online
implementation of the control method, the pre-trained target
DeepNN outputs approximations for the desired errors of the
actuators’ angular position, ∆θ̃d1 and ∆θ̃d2 , given the desired
orientation of the robot’s end-effector, qd. The analytical
desired angular position of the actuators, θd1 and θd2 , are
calculated in parallel using the IK model of the robot. We
sum the outputs of the target DeepNN and the IK model
to compute the compensated desired angular position as the
actuators’ setpoints, θ̃d1 and θ̃d2 . In turn, the orientation of the

Fig. 2. System configurations. (a) Block diagram of model-based control
method. (b) Block diagram of model-free control method.

robot’s end-effector, qm, is measured by overhead cameras.
There is always an error between the measured orientation
and the desired orientation while the robot is tracking the
desired trajectory. Thus, we have to close the control loop
in order to compensate this error. For this purpose, we train
the updating DeepNN in real-time with the measured data
whenever 300 set of measurements are available. The inputs
to the updating network is the measured orientation of the
end-effector and its ground-truth outputs are the errors of
the angular position of the actuators calculated based on the
measured angular positions of the actuators, i.e. ∆θm1 and
∆θm2 . We update the weights of the target network, w, with
the new weights, w′, when the training of updating network
is completed.

B. Implementation Results

In our experimental setup, we have two processes which
are executed in parallel to receive feedback from the camera
and to send control commands to the actuators of the robot.
This parallelization allows each process to have its own
refresh rate. The closed-loop control process has an average
frequency of 160 Hz. It is worthwhile to note that the robot
completes one spiral every 30 s, a rate that is limited by the
closed-loop control frequency. In this time range, 4800 data
points are sampled in the control loop. The performance of
the controller is evaluated under different loading conditions
while tracking the desired spiral trajectory. We start with
the no-load condition. Next, we add a 100 g fixed weight
to the robot’s end-effector. Then, an 80 g “variable” load
is added to the end-effector of the robot as well. This load
is variable since it consists of small freely moving masses
that are packed in a container that is attached to the robot’s
end-effector. By this experiment, we essentially evaluate the
performance of the model-based controller in three different
conditions, namely no-load, fixed-load, and variable-load
conditions. The transition between these loading conditions
are applied when we let the robot to complete three turns
of the spiral. Figure 3(b) shows the Mean Absolute Error
(MAE) of the controller’s performance in tracking of the



(a)

0 0.05 0.1 0.15 0.2 0.25
Time (s)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

A
ve

ra
ge

Er
ro

r

Tan adam
Log adam
Rule adam
Ident adam
Ident bgfs

(b)

Tan adam
Log adam
Rule adam
Ident adam
Ident bgfs

0 0.05 0.1 0.15 0.2 0.25
Time (s)

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

A
ve

ra
ge

Er
ro

r

(h) 10000Undeformed
Fixed load
Variable Load
AllData
20000

5000
2000
1500
1000

900
800
600
300

1 2 3 4 5 6 7 8 9
Spiral Path Number

0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
A

bs
ol

ut
e

Er
ro

r(
m

)

(i)

Desired Trajectory
Real Trajectory

Desired TrajectoryReal Trajectory

Desired TrajectoryReal Trajectory

Desired TrajectoryReal Trajectory

A
ng

le
(d

eg
)

A
ng

le
(d

eg
)

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

(c)

(d)

(e)

Real Pitch
Real Roll
Real YawDesired Yaw

Desired Pitch
Desired Roll

Real Pitch
Real Roll
Real YawDesired Yaw

Desired Pitch
Desired Roll

0 5 10 15 20 25 30
Time(s)

-50

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30
Time(s)

-50

-40

-30

-20

-10

0

10

20

30

40

10000Undeformed
Fixed load
Variable Load
AllData
20000

5000
2000
1500
1000

900
800
600
300

1 2 3 4 5 6 7 8 9
Spiral Path Number

0.02

0.04

0.06

0.08

0.1

0.12

M
ea

n
A

bs
ol

ut
e

Er
ro

r(
m

)

(f)

(g)

Real Pitch
Real Roll
Real YawDesired Yaw

Desired Pitch
Desired Roll

0 5 10 15 20 25 30
Time(s)

-50

-40

-30

-20

-10

0

10

20

30

40

0 5 10 15 20 25 30
Time(s)

-50

-40

-30

-20

-10

0

10

20

30

40

Real Pitch
Real Roll
Real YawDesired Yaw

Desired Pitch
Desired Roll

(j)

(k)

Desired TrajectoryReal Trajectory

A
ng

le
(d

eg
)

A
ng

le
(d

eg
)

Desired TrajectoryReal Trajectory

Desired TrajectoryReal Trajectory

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

-0.6
-0.4 -0.2 0 0.2 0.4 0.6

X (m)

-0.4

-0.2

0

0.2

0.4

0.6

Y
)

m(

-0.6

(l)

(m)

(n)

Fig. 3. (a)-(g):Trajectory tracking using model-based control method. (h)-(n):Trajectory tracking using model-free control method. (a) DeepNN
tuning for deformation error. (b) Tuning the retraining history in the control. (c) Trajectory tracking by pre-trained DeepNN. (d) Path tracking under fixed
load in top view. (e) Path tracking under variable load in top view. (f) Path tracking under fixed load in Euler angles. (g) Path tracking under variable load
in Euler angles. (h) DeepNN tuning for inverse kinematics. (i) Tuning the retraining history in control. (j) Path tracking under fixed load in Euler angles.
(k) Path tracking under variable load in Euler angles. (l) Trajectory tracking by Pre-trained DeepNN. (m) Path tracking under fixed load in top view. (n)
Path tracking under variable load in top view.

desired spiral trajectory in different loading conditions. For
better illustration, we show the graphs of errors separately
for each loading condition. The experimental results show
that the batch size of data that we used to train the updating
network has significant impact on the closed-loop controller
speed. We initially set this batch size to 300, but the
experiments show that the best performance is achieved when
this batch size is set to 1000 with our computational system
configuration. The smaller batch sizes, e.g. 900, provide
smaller training error while it suffers from over-fitting and
the controller will not be able to compensate the deformation
errors properly. Figures 3(e), and 3(g) illustrate the desired
spiral trajectory and the tracked path by the robot in different
scenarios of constant and variable loading conditions. The
Euler angles including the roll, pitch, and yaw of the end-
effector are shown in Figures. 3(f) and 3(g) for the same
paths and loading conditions.

V. MODEL-FREE CONTROL METHOD

In this section, we describe our proposed model-free
control method as well as the experimental implementation
results of tracking the desired spiral trajectory by the robot.

A. Approach

Figure 2(b) shows the block diagram of our proposed
model-free control method. As its name would suggest,
a model-free controller does not depend on the analytical
kinematic model of the robot while this model is directly
learned by the second type of DeepNN. We should note that

the target network is pre-trained offline with the training
dataset. In online implementation, the desired orientations
of the robot’s end-effector, qd, are given as the inputs of
the DeepNN and the outputs are approximation of desired
angular positions of the actuators, i.e. θ̃d1 and θ̃d2 . These
approximated angular positions are directly fed to the robot’s
actuators. Then, we store the measured orientation of the
end-effector, qm, using overhead cameras as well as the
angular positions measured by the actuator encoders. Similar
to the model-based control method, we employ an updating
network to update the weights of the target network when
300 set of measured data are available. In fact, the updating
network learns the IK of the robot in the presence of material
deformation caused by different loading conditions.

B. Implementation Results

Figure 3(h) shows the error of training the IK model of
the robot under deformation by the DeepNN with different
optimization algorithms and activation functions. Based on
experimental results, the best performance of DeepNN is
achieved with two hidden layers with identity activation
function and LBFGS as the optimization algorithm. Similar
to the previous case, the performance of the model-free
controller is evaluated under different loading conditions
including no-load, constant loading (100 g), and variable
loading (80 g). Figure 3(i) shows the MAE of tracking the de-
sired spiral trajectory by the robot at each loading condition.
The experimental results show that the best batch size for
the updating network is 500 data points. Figures 3(l), 3(m),



Fig. 4. (a) Effects of retraining history. (b) Path tracking errors under the
optimal scenario.

and 3(n) illustrate the desired spiral trajectory and the
tracked path by the robot’s end-effector in different loading
conditions. We also show the corresponding end-effector’s
Euler angles in Figures. 3(j) and 3(k).

VI. DISCUSSION AND ANALYSIS

The implementation of model-free controller is straight-
forward compared to the model-based controller implemen-
tation since there is no need to derive the analytical model
of the robot. This independence from the model allows us
to utilize the model-free method in the control of various
foldable robots, because the kinematic model of the robot can
be learned by DeepNNs in the loop. In the case that we do not
employ the updating network, we have an open-loop control
system in which the target network is able to to control the
robot to track the desired trajectory with small tracking error
in no-load condition. However, this open-loop controller does
not adapt to loaded conditions properly, especially when
the load is variable. Thus, the updating network plays an
important role in compensation of the tracking error via
online training of new loading conditions. In this way, the
adaptation to unseen loading conditions, which are applied
by the test set, will be performed properly in real-time by
the closed-loop controller.

Tuning of hyper-parameters and the optimal design of
DeepNNs are the most crucial steps in implementation of
our proposed control methods. Accordingly, it is highly
recommended to have a validation set to examine different
hyper-parameters in order to find optimal parameters. The
best hyper-parameters should minimize training error and
training time and minimize the variance of the model. The
issue of high variance results in over-fitting of the model,
which in turn causes large errors of tracking under unseen
loading conditions. It is of significant importance to tune
the batch size since it can directly affect the stability of
training and limit the training speed of updating DeepNN
in the closed-loop controller. Figure 4 shows the effect
of choosing different batch size for online training of the
updating DeepNN. As shown in Figure. 4, we also plots the
error graphs for training of IK model of the robot by the
updating DeepNN with different batch size in no-load and
loaded conditions.

The model-based control method uses DeepNN to ac-
commodate for the error found between the IK solution

and reality. Its limited performance led us to develop the
model-free approach, which exhibits better performance. We
believe we can attribute this improvement to the higher
computational cost of solving the IK Model, which impacts
controller frequency, vs the increased closed-loop frequency
of the model-free controller.

VII. CONCLUSION

In this paper, we proposed two closed-loop model-based
and model-free control methods based on DeepNNs for
compensating the material deformation of laminated robots.
We described a workflow for implementation of our proposed
control methods in three stages that describe sampling the
data, design of the DeepNNs, tuning the hyper-parameters
of DeepNNs, and implementation of the control methods.
Furthermore, two different DeepNNs were introduced, one
to train directly the IK model of the robot and another to
train the given the actuation space errors given the robot’s
task space information. The performance of our proposed
control methods were evaluated in tracking of a desired
spiral trajectory by a 2-DoF laminated foldable robot. The
experimental results show the effectiveness of the control
methods while the model-free controller outperforms the
model-based control method in that it results in smaller
tracking errors under different loading conditions.

Future work includes comparison between the proposed
control approach with the traditional closed-loop controller
and other machine learning techniques. There are many
potential future directions to improve our proposed control
methods. We aim to include system dynamics in the con-
trollers’ design and compensate the deformation of foldable
robots caused by dynamic loads. We also want to test our
proposed control methods on different foldable platforms to
evaluate the effectiveness of the methods on other robots.

REFERENCES

[1] P. Moseley, J. M. Florez, H. A. Sonar, G. Agarwal, W. Curtin, and
J. Paik, “Modeling, Design, and Development of Soft Pneumatic Actu-
ators with Finite Element Method,” Advanced Engineering Materials,
no. 6, 2015.

[2] C. Duriez, “Control of elastic soft robots based on real-time finite
element method,” Proceedings - IEEE International Conference on
Robotics and Automation, pp. 3982–3987, 2013.

[3] K. Suzumori, S. Endo, T. Kanda, N. Kato, and H. Suzuki, “A Bending
Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming
Robot,” in Proceedings 2007 IEEE International Conference on
Robotics and Automation. IEEE, apr 2007, pp. 4975–4980. [Online].
Available: http://ieeexplore.ieee.org/document/4209864/

[4] J. Hiller and H. Lipson, “Dynamic simulation of soft heterogeneous
objects,” arXiv preprint arXiv:1212.2845, 2012.

[5] R. J. Webster and B. A. Jones, “Design and kinematic modeling of
constant curvature continuum robots: A review,” International Journal
of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

[6] S. I. Rich, R. J. Wood, and C. Majidi, “Untethered soft robotics,”
Nature Electronics, vol. 1, no. 2, pp. 102–112, 2018.

[7] O. Goury and C. Duriez, “Fast, Generic, and Reliable Control and
Simulation of Soft Robots Using Model Order Reduction,” IEEE
Transactions on Robotics, vol. 34, no. 6, pp. 1565–1576, 2018.

[8] R. J. Webster III and B. A. Jones, “Design and kinematic modeling
of constant curvature continuum robots: A review,” The International
Journal of Robotics Research, vol. 29, no. 13, pp. 1661–1683, 2010.

http://ieeexplore.ieee.org/document/4209864/


[9] S. Huang, Q. Zhang, Z. Liu, X. Wang, and B. Liang, “Control
of a piecewise constant curvature continuum manipulator via policy
search method,” 2018 IEEE International Conference on Robotics and
Biomimetics, ROBIO 2018, no. 61673239, pp. 1777–1782, 2019.

[10] H. Yang, M. Xu, W. Li, and S. Zhang, “Design and Implementation
of a Soft Robotic Arm Driven by SMA Coils,” IEEE Transactions on
Industrial Electronics, vol. 66, no. 8, pp. 6108–6116, 2019.

[11] C. Della Santina, R. K. Katzschmann, A. Bicchi, and D. Rus, “Dy-
namic control of soft robots interacting with the environment,” 2018
IEEE International Conference on Soft Robotics, RoboSoft 2018, pp.
46–53, 2018.

[12] R. K. Katzschmann, C. D. Santina, Y. Toshimitsu, A. Bicchi, and
D. Rus, “Dynamic motion control of multi-segment soft robots using
piecewise constant curvature matched with an augmented rigid body
model,” RoboSoft 2019 - 2019 IEEE International Conference on Soft
Robotics, pp. 454–461, 2019.

[13] I. S. Godage, Y. Chen, K. C. Galloway, E. Templeton, B. Rife, and I. D.
Walker, “Real-time Dynamic Models for Soft Bending Actuators,”
2018 IEEE International Conference on Robotics and Biomimetics,
ROBIO 2018, pp. 1310–1315, 2019.

[14] I. S. Godage, G. A. Medrano-Cerda, D. T. Branson, E. Guglielmino,
and D. G. Caldwell, “Dynamics for variable length multisection
continuum arms,” International Journal of Robotics Research, vol. 35,
no. 6, pp. 695–722, 2016.

[15] T. M. Bieze, F. Largilliere, A. Kruszewski, Z. Zhang, R. Merzouki,
and C. Duriez, “Finite element method-based kinematics and closed-
loop control of soft, continuum manipulators,” Soft Robotics, vol. 5,
no. 3, pp. 348–364, 2018.

[16] B. Miao, T. Li, and W. Luo, “A DSC and MLP based
robust adaptive NN tracking control for underwater vehicle,”
Neurocomputing, vol. 111, pp. 184–189, 2013. [Online]. Available:
http://dx.doi.org/10.1016/j.neucom.2012.12.026

[17] G. Zhang and X. Zhang, “Concise robust adaptive path-following
control of underactuated ships using DSC and MLP,” IEEE Journal
of Oceanic Engineering, vol. 39, no. 4, pp. 685–694, 2014.

[18] A. T. Hasan, N. Ismail, A. M. Hamouda, I. Aris, M. H.
Marhaban, and H. M. Al-Assadi, “Artificial neural network-
based kinematics Jacobian solution for serial manipulator passing
through singular configurations,” Advances in Engineering Software,
vol. 41, no. 2, pp. 359–367, 2010. [Online]. Available: http:
//dx.doi.org/10.1016/j.advengsoft.2009.06.006

[19] P. Jha and B. B. Biswal, “A Neural Network Approach for Inverse
Kinematic of a SCARA Manipulator,” IAES International Journal of
Robotics and Automation (IJRA), vol. 3, no. 1, pp. 52–61, 2014.

[20] J. W. Park, R. G. Harley, and G. K. Venayagamoorthy, “Indirect
adaptive control for synchronous generator: Comparison of MLP/RBF
neural networks approach with Lyapunov stability analysis,” IEEE
Transactions on Neural Networks, vol. 15, no. 2, pp. 460–464, 2004.

[21] S. Alavandar and M. J. Nigam, “Neuro-fuzzy based approach for
inverse kinematics solution of industrial robot manipulators,” Inter-
national Journal of Computers, Communications and Control, vol. 3,
no. 3, pp. 224–234, 2008.

[22] A. H. E. Ezzat A Showaib, “Artificial Neural Network Based Forward
Kinematics Solution for Planar Parallel Manipulators Passing through
Singular Configuration,” Advances in Robotics & Automation, vol. 02,
no. 02, 2013.

[23] B. Daya, S. Khawandi, and M. Akoum, “Applying Neural Network
Architecture for Inverse Kinematics Problem in Robotics,” Journal of
Software Engineering and Applications, vol. 03, no. 03, pp. 230–239,
2010.

[24] D. T. Pham, M. Castellani, and A. A. Fahmy, “Learning the inverse
kinematics of a robot manipulator using the Bees Algorithm,” IEEE
International Conference on Industrial Informatics (INDIN), no. Indin,
pp. 493–498, 2008.

[25] C. M. Gosselin and F. Caron, “Two degree-of-freedom spherical
orienting device,” Oct. 19 1999, uS Patent 5,966,991.

[26] E. Samson, D. Laurendeau, M. Parizeau, S. Comtois, J.-F. Allan, and
C. Gosselin, “The agile stereo pair for active vision,” Machine Vision
and Applications, vol. 17, no. 1, pp. 32–50, 2006.

[27] M. Ouerfelli and V. Kumar, “Optimization of a spherical five-bar
parallel drive linkage,” Journal of mechanical design, vol. 116, no. 1,
pp. 166–173, 1994.

[28] M. Sharifzadeh, Y. Jiang, R. Khodambashi, and D. M. Aukes, “In-
creasing the life span of foldable manipulators with fabric,” in ASME
2020 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. American
Society of Mechanical Engineers Digital Collection, 2020.

[29] J. P. Whitney, P. S. Sreetharan, K. Y. Ma, and R. J.
Wood, “Pop-up book MEMS,” Journal of Micromechanics
and Microengineering, vol. 21, no. 11, p. 115021, nov
2011. [Online]. Available: http://stacks.iop.org/0960-1317/21/i=11/
a=115021?key=crossref.4ebe6c2c4c4804ab44e0dfb88e1b355e

[30] P. S. Sreetharan, J. P. Whitney, M. D. Strauss, and R. J. Wood,
“Monolithic fabrication of millimeter-scale machines,” Journal of
Micromechanics and Microengineering, vol. 22, no. 5, p. 055027,
may 2012. [Online]. Available: http://stacks.iop.org/0960-1317/22/i=
5/a=055027?key=crossref.491915c123069b686e444a77780882a9

http://dx.doi.org/10.1016/j.neucom.2012.12.026
http://dx.doi.org/10.1016/j.advengsoft.2009.06.006
http://dx.doi.org/10.1016/j.advengsoft.2009.06.006
http://stacks.iop.org/0960-1317/21/i=11/a=115021?key=crossref.4ebe6c2c4c4804ab44e0dfb88e1b355e
http://stacks.iop.org/0960-1317/21/i=11/a=115021?key=crossref.4ebe6c2c4c4804ab44e0dfb88e1b355e
http://stacks.iop.org/0960-1317/22/i=5/a=055027?key=crossref.491915c123069b686e444a77780882a9
http://stacks.iop.org/0960-1317/22/i=5/a=055027?key=crossref.491915c123069b686e444a77780882a9

	Introduction
	2-DoF Laminated Parallel Robot
	Inverse Kinematics
	Forward Kinematics

	METHODOLOGY
	Data Sampling
	Modeling
	Control

	Model-Based Control Method
	Approach
	Implementation Results

	Model-Free Control Method
	Approach
	Implementation Results

	Discussion and Analysis
	Conclusion
	References

