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Abstract. Among underwater vehicles, fish-inspired designs are often selected for their
efficient gaits; these designs, however, remain limited in their maneuverability, especially in
confined spaces. This paper presents a new design for a fish-inspired robot with two degree-of-
freedom pectoral fins and a single degree-of-freedom caudal fin. This robot has been designed
to operate in open-channel canals in the presence of external disturbances. With the complex
interactions of water in mind, the composition of goal-specific swimming gaits is trained via
a machine learning workflow in which automated trials in the lab are used to select a subset
of potential gaits for outdoor trials. The goal of this process is to minimize the time cost of
outdoor experimentation through the identification and transfer of high-performing gaits with the
understanding that, in the absence of complete replication of the intended target environment,
some or many of these gaits must be eliminated in the real world. This process is motivated
by the challenge of balancing the optimization of complex, high degree-of-freedom robots
for disturbance-heavy, random, niche environments against the limitations of current machine
learning techniques in real-world experiments, and has been used in the design process as well
as across a number of locomotion goals.

The key contribution of this paper involves finding strategies that leverage online learning
methods to train a bio-inspired fish robot by identifying high-performing gaits that have
a consistent performance both in the laboratory experiments and the intended operating
environment. Using the workflow described herein, the resulting robot can reach a forward
swimming speed of 0.385 m/s (0.71 body lengths per second) and can achieve a near-zero turning
radius.

Keywords: Fish-inspired robot, Gait selection, Maneuverability, Evolution strategy, Pectoral
fins, Training workflow, Experimental training
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1. Introduction

The challenge of underwater robotic locomotion is a complex phenomenon depending on
the timed interactions between water and an robot’s swimming surfaces. Though engineered
solutions for swimming robots are often inspired by nature, characterization of these systems
often occurs in ideal laboratory environments where the water column is controlled and well
characterized. Based on the necessity to create repeatable and controlled conditions, ideal
swimming gaits are often constructed using either analytic fluid dynamic models or from data
in controlled experimental environments. Studying robots in these conditions, however, can
negatively impact the ability of optimized robotic swimmers to achieve similar performance
in real-world environments, where disturbances and variation are uncontrolled. Thus, the
majority of robotic fish that have been developed are rarely optimal for swimming in real world
environments. Some notable exceptions include [1, 2].

Having evolved over millions of years, fish and other aquatic animals have solved the
problem of operating in variable conditions through a wide range of adaptations that endow
them with the ability to swim with high efficiency, speed, and agility [3–5]. The sheer number
of different fish species in the world (two to three thousand Cichlids alone [6]) demonstrates that
each permutation of the many swimming styles, body layouts, and relative scales of swimming
surfaces seen in these species successfully balances certain needs of that species within its niche.

Transferring biologists’ understanding of how fish and other swimmers utilize one or more
swimming strategies is one approach researchers use in dealing with real-wold conditions.
Research has focused on caudal (tail) and pectoral fin design, as these fins are the primary
generators of thrust in biological fishes [7, 8]. Various forms of rigid [9–11], multi-body [12–
22] and soft [2, 23] caudal fins have been studied in order to emulate this propulsion system.
Recent studies show that soft caudal fins produce more effective vortices compared to rigid fins
while being significantly simpler than multi-bodied ones [2]. Carangiform fish propulsion is
also achieved by leveraging exchange of momentum between robot’s body and fluid vortices
without requiring external fins [11, 24]. Soft fabrication techniques have been also employed
successfully in many robotic fish [2, 23, 25–29]. Mechanisms have been built to emulate the role
of pectoral fins of fish in locomotion [30], because these multipurpose fins provide various forms
of flapping, rowing, and cupping motions, each of which are used in a variety of swimming
scenarios [7, 31]. The complexity of these fins can vary widely across species [30]; complex
pectoral fin mechanisms have been constructed to study their role in biological underwater
locomotion [7, 8], and have been integrated – in simplified form – in robotic systems alongside
caudal fins for gliding, diving, depth control, thrust generation [2, 4, 9, 32–36]. In the majority
of cases, however, these robotic fish have not been trained and tested in environments other
than ideal lab conditions. We believe that the high repeatability associated with ideal test
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Figure 1: Conceptual illustration of maneuvering and interaction criteria in developing
a robotic fish for performing tasks. A: Capability of interacting with environment while
swimming. B: Maneuverability in tight spaces (Green arrow: Forward swimming using caudal
fin. Yellow arrow: Successful low radius turning using pectoral fins. Red arrow: Failed high
radius turning using caudal fin).

environments can negatively impact the robot’s performance and its capability to perform tasks
in the real world. In this paper, we show that non-ideal experimental setups with uncertainties
embedded in them, when utilized in conjunction with machine learning techniques is useful to
experimentally search for optimal gaits that can be used across different environments.

Instead of utilizing model-driven techniques for optimizing gaits from experimental data,
research has also investigated the use of machine learning and artificial intelligence techniques
for directly obtaining optimal swimming gaits and control strategies. Two methods of bionic
learning control and Iterative Learning Control (ILC) have been mainly employed in learning
fishlike swimming. The objective in bionic control is to combine the advantages of both
trajectory approximation and neural-based control in order to generate different swimming
patterns [37–39]. ILC is mainly used to achieve real-time control of robotic fish due to the
simplicity of the algorithms with model-free properties [40]. Motion optimization is used
widely throughout robotics to improve locomotion performance. This method is used toward
improving the performance of robotic fish in terms of speed, efficiency and maneuvering
control [3]. Different algorithms have been used by roboticists for motion optimization.
For example, a combination of dynamic model and Particle Swarm Optimization is used
in [41], while Zhou et al use a Genetic Algorithm (GA) to optimize undulatory swimming gait
parameters for a fish robot [42]. The maximum swimming speed of a robotic fish was obtained
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by applying a combination of a GA and Hill Climbing Algorithm [43]. Again however, many
of these approaches have only been utilized or evaluated in laboratory settings rather than more
lifelike conditions.

To provide insights into the challenges addressed above, this paper describes Fish-Inspired
Robot for Extreme Environments (FIRE), a robot intended to navigate within an open canal
system for the purposes of clearing underwater vegetation. In order to achieve defined tasks,
the robot has been designed to orient its body independent from generating forward thrust in
order to simplify control and motion planning issues that would normally arise if they were
coupled. The size constraints of our target underwater environment and the remote nature of
the work to be done also play an important role in the design. To expand the robot’s capabilities
and maneuverability, we have implemented a more complex mechanism in the pectoral fins.
Because of the limitations of learning in a single environment, we also discuss a learning-
based training and searching workflow for identifying locomotory gaits that survive the transfer
between lab-based trials and secondary, target environments. This has been used to generate a
number of swimming strategies and can be expanded to assist in the design of the robot itself.

Our current study focuses on the design, manufacturing, system identification, and finding
methods to obtain the high performance gaits that are applicable across different uncertain
environments. These are critical parts of the greater challenge of developing a robotic fish
that is capable of self-navigating and autonomously performing tasks in the field. This effort
has been made in the context of a recent funded collaboration with a local water utility in
the Phoenix metropolitan area; the long-term goal of the project is to use autonomous robots
to navigate along narrow open canals for the purposes of cutting vegetation or scrubbing
surfaces (figure 1). This requires new capabilities not easily found within existing literature:
the ability to navigate narrow, open channels while exerting forces with an end-effector on
the sloped sides and shallow bottom of a waterway. Though these challenges represent a
longer-term set of achievements than are presently solved, they require strategies for efficiently
learning new actions within defined settings and then testing transferred knowledge in target
environments in a way that balances the costs and limitations of testing in both environments.

1.1. Contributions

This paper sheds light on not only the design, manufacturing and system identification of the
robotic fish, but also applies learning-based training and searching method to obtain the high
performance gaits that are applicable across different uncertain environments. The contributions
of the paper may be summarized as follows: we introduce (i) a pectoral fin mechanism design
based on a 2-DOF spherical mechanism facilitated by laminate design concepts that minimizes
manufacturing costs typically associated with spherical, parallel mechanisms. (ii) A design
for a fish-inspired robot, which combines one caudal and two pectoral fins. The resulting five
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Figure 2: FIRE, the souckermouth catfish-inspired robot. A: System overview. B: 2-
DOF spherical mechanism exploited in FIRE’s pectoral fins which is built by using laminated
techniques. C: Extracted frames of a pectoral fin’s propulsion for turning (result of training
in pectoral fin’s attachment selection). D: Schematics of the pectoral fin’s 2-DOF spherical
mechanism, its workspace (blue dots), and end-effector path in previous motion (red dots).

degrees of freedom may be described with a complex, high-dimensional set of locomotion/gait
parameters. To reduce this complexity, we have also (iii) developed strategies for identifying
high-performing sets of these gait parameters with an online learning strategy (CMA-ES). Our
lab setup often differs from the intended goal environment in key ways (perturbation, water
speed, type of data-collection setup, i.e., force instead of trajectory). This has also led us to
(iv) develop strategies for finding gait parameter sets that have high performance when tested
in the lab and the intended operating environment. These efforts have resulted in a design and
optimization workflow for robots that works well in niche environments, while permitting the
majority of development, data collection, and characterization to be done in the lab.
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2. Fish-inspired Robot for Extreme Environments.

In this study, we have developed and trained a robotic fish capable of swimming in extreme
environments (figure 2A). The robotic fish propels itself by using its pectoral and caudal fins.

2.1. Design and manufacturing of robotic fish

FIRE is inspired by the suckermouth catfish (Plecostomus) due to the similar of this fish’s
biological niche with our target environemnt. These benthic, bottom-dwelling creatures have
wide, flat bodies, and are evolved to live in high-current streams and swim along surfaces to
feed while avoiding higher mid-stream currents.

In designing the robotic fish body, we have reserved space for electronics, a swim bladder
for buoyancy, and a sensor suite. At this stage, the bladder is inflated prior to deployment in
order to set the fish in a neutrally-buoyant state. We have embedded three types of fins evocative
of a catfish’s pectoral, caudal and dorsal fins. While two sets of pectoral fins are laterally placed
in the center of the robotic fish, its caudal fin is placed at its posterior (figure 2A). A passive
dorsal fin is located on the top of the robotic fish to resist body rotation due to caudal fin motion.

2.2. Pectoral fin: 2-DOF mechanism

We have designed and constructed a 2-DOF spherical parallel mechanism (also known as a
5-bar mechanism) to move the pectoral fins (figure 2B). The advantage of using this parallel
mechanism is that the actuators are mounted within the body as opposed to a serial mechanism
design; this reduces the torque requirements of our servos while simultaneously permitting a
more compact, lower-drag design. This spherical mechanism has been scaled down via laminate
fabrication techniques, whose benefits are discussed below. The mechanism is designed to be
flat in its neutral state and uses a symmetric design in which the angles between all joins are
72 degrees. This flat, symmetric design permits a more compact design (as opposed to its most
popular implementation of this mechanism [44]) as well as enabling us to attach and evaluate a
two-body fin.

The two degree-of-freedom mechanism used in FIRE uses laminate techniques for creating
a spherical five-bar linkage. Laminate devices are typically manufactured by an iterative process
whereby a number of different flat materials are individually cut and laminated together to
create a traditional kinematic mechanism connected by flexure joints. This process has a
number of benefits. A number of design variations may be rapidly produced, permitting design
variations to be analyzed quickly; second, the low-cost of materials means that such devices can
be reproduced quickly and at lower costs than traditional linkages, making this device design
compatible with our goal to deploy a low-cost “school” of robotic fish for maintaining water
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canals.

3. Training the Robotic Fish

This section covers the process of training the robotic fish. We first present the proposed
workflow of training the robot. Then, we discuss the experimental setup and the optimization
algorithm that has been used in the training. Finally, we cover leveraging the experimental
training in selecting the pectoral fin attachments.

3.1. Training Workflow

The process of training FIRE comes with challenges due to its multi-fin design and the high
number of gait parameters required to enumerate a gait. Its intended functionality is to be used
in the maintenance of water canals with a width of as low as 3 feet; these canals have high
currents and perturbations due to irregular flows as well as obstacles. In order to train the
robotic fish to maneuver in this environment, a training workflow has been proposed to find
gait parameters in presence of perturbation. To the knowledge of the authors, FIRE is the first
robotic fish to be trained in an environment where there exists perturbation and reflected waves
with amplitudes comparable to the robotic fish’s height;

Figure 3A highlights a workflow we have used to balance the competing needs of testing in
a repeatable environment while learning how our device will operate in more realistic settings.
This is informed by the current state and limitations of learning algorithms and the time and
resources needed to learn motion patterns for complex, high-dimensional systems. We next
describe three steps of the proposed workflow:

Experiment Design: The first segment of our workflow, experimental design, consists of
(i) Selecting a training algorithm and designing the experimental setup, (ii) Formulating gait
motion parameters and desired goal performance, and (iii) Introducing possible constraints and
relations to reduce and simplify the high dimensional parameter space. We have selected a
machine-learning-based approach towards selecting robust gaits; while the whole space may be
searched for lower-dimensional spaces, we utilize the Covariance matrix adaptation evolution
strategy (CMA-ES) as a way to find ideal parameters in higher dimensional spaces, in which
finding global optimal solutions through spanning the space is nearly impossible.

Motion gaits are formulated using sinusoidal patterns. This makes it possible to create
motion commands with a small number of parameters, simplifying the training process. The
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Figure 3: FIRE’s training workflow. A: Workflow proposed for training FIRE. B: The
experimental setup. C: Experimental implementation of on-line CMA-ES algorithm. D:The
untethered FIRE.

servos’ command signals are defined as:

Right pectoral fin: θ1 = β1 + α1 sin(2πf1t)

θ2 = β2 + α2 sin(2πf2t+ φ1),

Left pectoral fin: θ3 = β3 + α3 sin(2πf3t)

θ4 = β4 + α4 sin(2πf4t+ φ2),

Caudal fin: θ5 = β5 + α5 sin(2πf5t)

(1)

where θi is actuators’ angles and βi, αi, ,fi , and φi are the sinusoidal signals’ angular offset,
amplitude, frequency and phase shift, respectively. There are 17 parameters to control the
maneuver of the robotic fish fins. To evaluate the performance of each parameter, we measure
forces and torques as the primary criteria for evaluating robotic fish performance, as in [7, 45].
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Gait Search: The goal of this segment of our workflow (figure 3) is to perform a smart search
through the n-dimensional space of parameters while evaluating the performance of each set of
gait parameters. In training FIRE, we measure the generated torque and forces by fin propulsion
in the presence of nonuniform vortices in the water tank. Since these vortices can randomly
affect thrust generation, tests are typically repeated for each set of parameters to minimize this
effect. The sampling times for each test have been calculated based on the propulsion frequency
(period), the range of the UR5’s path, and velocity of the UR5’s end-effector. By varying the
sampling frequency we can maximize the number of gait cycles within the limited range of a
single test. The speed of the UR5 is also limited to 0.1 m/s during fin-based locomotion trials
and 0.6 m/s when the fins are not actuated.

We believe this experimental approach pairs well with machine learning because it injects
random, unmeasured, unmodeled noise into each trial; this would be difficult to anticipate in
a CFD-based optimization. We contend that this helps prevent over-fitting to a specific set of
initial conditions which must be known a priori, and generates more robust solutions.

Gait Selection: The goal of this portion of the workflow is to find a set of gait parameters
that repeatably perform well against a user-supplied performance objective over many cycles in
different situations. Though we prefer to perform testing in the lab, the fish must ultimately be
able to perform a variety of specialized maneuvers, including turning, diving, and swimming
upstream in a canal where perturbation and current are present. To achieve this objective, the
performance of any selected gait must, therefore, have high performance both in the laboratory
experiments and the real-world across many different locomotion goals. Hence, our workflow
evaluates more than one top-performing gait for a given maneuver using the untethered
FIRE (figure 3D). In other words, for each swimming maneuver, the top performing gaits found
in CMA-ES search algorithms have been selected as candidates to be evaluated in the free-
swimming robot. The gait with consistently high-performing swimming across lab/outdoor
environments is then selected for each swimming maneuver. The best gait must satisfy two
criteria in all environments. The robot’s observed motion must first be consistent in both
environments for each desired maneuver; the gait must also exhibit the highest performance
across all tested gaits (when evaluated by the same cost function used in the initial gait
search). For example, for the selected ‘Turning’ gait (Sec. 4.1), the gait reported as the highest
performing gait exhibited consistent, pure turning motion, and its turning speed was highest
among all tested gaits in both environments (pool and tank).
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Table 1: The tuned parameters for the CMA-ES algorithm.

Parameters Value Parameters Value
Population size 60 Number of effective solutions 16.57

Number of variables 6 Initial step size 0.67

Maximum iteration 1, 000 Step size dampening 2.66

Number of parents 30 Learning rate 0.36

3.2. Experimental setup

3.3. Covariance matrix adaptation evolution strategy

Evolution Strategy (ES) algorithms are optimization techniques considered as practical
alternatives to gradient-based methods which suffer from converging to local optimal
solutions [46]. The Covariance Matrix Adaptation Evolution Strategy is a type of ES
algorithms, known as a stochastic method for numerical optimization of nonlinear and non-
convex optimization problems [47]. Using the CMA-ES in practical experiments has many
advantages in comparison with other metaheuristic and search-based algorithms since it is
known to have enhanced convergence speed. These practical benefits include increasing the
service life of motors, bearings, and gears that can become worn or damaged during training. On
the other hand, the main disadvantage of the CMA-ES is its computational complexity which is
originated from the covariance matrix self-adaptation and decomposition in this algorithm [48].
In the recent, similar study conducted in [49], the CMA-ES algorithm has been employed to
optimize the controller for travel speed control of a Knifefish-inspired soft robot. They used this
algorithm due to its short evaluation time compared to other evolutionary strategies. Using the
CMA-ES algorithm to improve convergence rates can have practical benefits in robotic systems,
including increasing the service life of motors, bearings, and gears, which can be overloaded
during training.

In our experimental tests, we have implemented the CMA-ES algorithm to find optimal
values for actuators’ gaits, i.e., βi, αi, fi, and φ (figure 3C). These parameters control the
search behavior of the algorithm including the parameters listed in table 1. We have tuned
the parameters empirically based on experiments and observations so that the CME-AS would
find optimal solutions in acceptable time and accuracy ranges. At each iteration, the suggested
solutions by the CMA-ES algorithm can appear out of the feasible range of variables restricted
by the mechanical constraints and limitations of the servo motors. Hence, we have defined
a penalty function in order to exclude non-feasible solutions. The penalty function gradually
confines the large search space to the feasible solution space of the problem. Consequently,
the number of suggested non-feasible solutions decreases as the number of iterations increases.
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Figure 4: Pectoral fins’ attachment selection. Value of goal function for CMA-ES training
trials when UR5 is fixed (simulating still water) for different attachments.

Even a state-of-the-art algorithm like CMA-ES faces difficulty in non-ideal test environments
where high disturbances may reduce system repeatability. As explained in the ‘Swimming
Forward’ Section, in our non-ideal training environment, CMA-ES has failed to converge in a
reasonable time for a free search within the 17-dimensional space. Hence, we have been obliged
to define relationships to decrease the number of free gait parameters. The maximum dimension
of the parameter space which we have successfully found optimal values is 7.

3.4. Selection of pectoral fin attachment

We leverage the online optimization in finding the pectoral fins attachment that enhances the
turning of the robotic fish. The proposed mechanism for the pectoral fin is a 2-DOF spherical
mechanism capable of creating rotation about two axes simultaneously within a finite circular
workspace. The fin’s attachment to the mechanism to the 5-bar mechanism is important because
it impacts the fin’s range of motion within that workspace. Hence, three different attachments
for the spherical mechanism have been designed, built, and tested. In addition, a two-bodied fin
design has been investigated. CMA-ES has been used to train each fin design for maximizing
turning torque, and the best fin design has been selected based on the result obtained. Figure 4
illustrates the different fin designs, as well as the results of CMA-ES training for maximizing
the turning torque generated by pectoral fins’ propulsion. Figure S1 shows the torque generated
by the highest performing gait as well as the convergence plots of all gait parameters throughout
the CMA-ES training.
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4. Results

FIRE can achieve swimming speed of 0.385 m/s (0.71 body length per second) using its caudal
fin and can perform pure rotation by utilizing its pectoral fins. The turning speed in this
rotation is 15.68 deg/s. To the knowledge of the authors, the proposed robotic fish is the
first robotic fish to perform pure rotation using pectoral fins, with a ration radius close to
zero. The obtained rotation rate using pectoral fins, though not as fast as multi-bodied tail
robotic fish [12, 13] (30 50 deg/s), is comparable with other robotic fish [50] (12.6 deg/s) and
[29] (7.5 deg/s). FIRE’s forward swimming speed is competitive to most other state-of-art
robotic fish, e.g. [2] (0.51 body length per second) and [50] (0.37 body length per second), with
exception to Tunabot’s 4 body lengths per second [1]. This performance is made possible via
innovations in the design of the robot as well as the use of machine learning to identify good
gaits, as described below.

4.1. Turning

As illustrated in figure 1B, FIRE’s turning radius is important for improving maneuverability
in close quarters. This is supported by literature that demonstrated how a caudal fin alone is
insufficient to reduce a robot’s turning radius for maneuvering in tight environments [2, 9, 51].
Using its pectoral fins, FIRE can now perform a 360-degree turn with a near-zero turning
radius. Figure 2B illustrates the mechanism underlying responsible for producing the pectoral
fin’s motion. This mechanism’s workspace and a sample time-lapse of its motion are shown
in figures 2C and D, respectively.

To train the robotic fish for sharp turns, we have carried out a study to maximize the amount
of turning torque generated by the pectoral fin’s propulsion. Turning performance has also been
used as the selection criterion for selecting the fins’ optimal attachment (for more details refer
to material and methods section).

FIRE achieves its best turning performance using both pectoral fins in conjunction with
each other. We considered two different cases in our search for the best gait parameters. In the
case of still water, the UR5 is kept stationary; in the second case, it is moved along a straight
path at 0.1 m/s to simulate current. In both cases, the test is repeated three times for each set of
parameters.

In presence of perturbation, our training algorithm fails to converge in a reasonable time
when we try to search through the fourteen dimensional space of the pectoral fins’ parameters.
Hence, FIRE’s pectoral fins are parameterized in such a way that their motion is synchronized
along an opposite path, meaning that when one is moving clockwise, the other one is moving
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Figure 5: FIRE’s turn training. A: Value of goal function for CMA-ES training trials when
UR5 is fixed (simulating still water). B: Value of goal function for CMA-ES training trials
when UR5 is moving with 0.1 m/s speed (simulating water with current). C: Turning torque
generated in time for selected gait. D: Extracted frames of FIRE turning in the 2-feet wide tank.
E: Extracted frames of FIRE turning in the pool.

counterclockwise. This is achieved by introducing the following relationships:

α1 = −α3, α2 = −α4, β1 = −β3, β2 = −β4, f1 = f3, f2 = f4, φ1 = φ2 (2)

We believe this helps magnify the turning torque generated by the fins rather than canceling
them out. This assumption also reduces the gait parameter space by half from fourteen to seven.

Figures 5A and B show the turning torques generated in the CMA-ES search for the
best gaits in still and moving water, respectively. Based on the peak generated torques and
repeatability (marked by red star in figures 5A and B), 8 unique gaits have been selected
for testing in real-world environments with an untethered fish; the best motion gait is
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subsequently selected based on its performance in different environments (marked by a green
star in figure 5A). Figure 5C illustrates the torque generated through time by the selected gait.
Using this motion pattern, FIRE can perform a 360-degree turn with a near zero radius and the
average speed of 30.25 deg/s in our two foot wide experimental lab setup (figure 5D), despite the
presence of perturbations caused by waves reflected by the tank wall. It should be mentioned
that the caudal fin is detached to permit FIRE to turn in the tank without hitting the walls.
Figure 5E shows the performance of the same gait in a pool. While the turning speed is reduced
to 15.68 deg/sec, the robot can reliably turn even when it is subjected to perturbation (Movie S1).
The authors believe that the slower turning performance of FIRE can be mostly attributed to the
reattached caudal and dorsal fins on the untethered robot.

For turning with larger radius, FIRE can utilize its pectoral fins in conjunction with its
caudal fin. While the robot can use the gait selected above in combination with its caudal
fin for larger-radius turning, we studied a more energy-efficient approach to accomplish this
goal (figure 6A). In this approach, the robot’s pectoral fins are fixed in different configurations in
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Figure 7: FIRE’s swimming forward training. A: Value of goal function for CMA-ES
training trials in minimizing the drag exerted on FIRE’s body. B: Spanning gait’s parameter
space for caudal fin thrust generation when the UR5 is moving with 0.1 m/s speed and FIRE
pectoral fins are in neutral (blue) and minimum-drag (red) configurations. Gait’s amplitude
and frequency are shown in orange and pink, respectively. C: FIRE in its minimum drag
configuration. D: FIRE swimming forward in minimum drag configuration.

order to produce drag. This asymmetric drag on the robot’s body enables FIRE to turn gradually,
while saving power by avoiding continuous actuation of the pectoral fin servos. As the objective
is to find the configuration that maximizes turning torque at various speeds, individual tests are
repeated three times per parameter set, once at 0.1, 0.2, and 0.3 m/s each. The cost function has
been defined as the summation of average turning torque across all three speeds. The selected
configuration and the training procedure is shown in figure 6.

4.2. Swimming Forward

4.2.1. Body Drag Minimization The pectoral fin configuration affects the amount of drag
exerted on the robotic fish. Our training algorithm has succeeded in reducing drag on the body
by 40 percent across different speeds by finding the optimum pectoral fin configuration. We use
the training algorithm to minimize drag by finding fixed servo positions that put both fins in an
orientation that minimizes drag. Individual tests for each fin configuration are repeated three
times per parameter set, once at 0.1, 0.3, and 0.6 m/s each. The obtained results in figure 7A
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show that the summation of the measured drag value across all speeds has been reduced from
11 N in the initial neutral configuration to 6 N in the minimum-drag configuration (figure 7C).
It should be mentioned that we believe a noticeable part of the measured drag is associated with
the attachments used to fix the robotic fish to the force sensor and robotic arm.

4.2.2. Forward Thrust Generation with the Caudal Fin FIRE can swim forward with a
maximum speed of 0.385 m/s by relying solely on its caudal fin (Movie S1 and figure 7D).
This mechanism consists of a servo motor moving a flexible, fin-shaped plastic sheet back
and forth to produce thrust. Experimental results show that the tail performs best when
α5 = 60 deg and f5 = 1.4Hz. The thrust produced by the caudal fin is controllable when
f5 = 1.4Hz. Because the caudal fin is ineffective for maneuvering in tight spaces, its motion
has been set to be symmetric (β5 = 0). The three-dimensional space of function parameters
(α5, β5, andf5) has been spanned by measuring the average of sampled thrust produced by the
caudal fin across one cycle. In this study, we search for optimal caudal fin gaits by considering
the effect of water’s opposing currents by commanding the UR5 arm to move at 0.1 m/s. Two
different cases of pectoral fin orientations have also been considered throughout the caudal fin
study. These cases are neutral and minimum-drag orientations of the pectoral fins. Figure 7C
illustrates the value of thrust produced by caudal fin based on the gait’s amplitude (orange)
and frequency (pink) when FIRE pectoral fins are in neutral (blue) and minimum-drag (red)
configurations. The maximum thrust produced by the caudal fin increases by almost 15 percent
when the pectoral fins have been moved from their neutral to the minimum-drag configuration.

After fitting the drag and thrust generation plots, we can estimate that the caudal fin can
achieve a forward velocity of 0.16 and 0.18 m/s when the pectoral fins are in their neutral and
minimum-drag configurations, respectively. Considering that the robotic fish has attachments
that increase drag during laboratory experiments, the swimming speed achievable by the
untethered robotic fish is expected to be more than the value that has been estimated by matching
the body drag and the caudal fin’s thrust generation.

4.2.3. Forward Thrust with Caudal and Pectoral Fins The purpose of this next study is to
improve forward thrust by utilizing the pectoral fins’ propulsion. The obtained results show
that in our current design and configuration, the pectoral fins are not capable of improving the
thrust produced by the caudal fin. These results are compatible with observations of pectoral
fins’ propulsion being used in low speed swimming by Lauder et al. [7]. We have considered
a number of different cases for this objective. In the initial case, we have performed an
unconstrained full search. This has resulted in a gait search in the 16-dimensional parameters
space (two for symmetric caudal fin propulsion and two sets of seven variables for each pectoral
fin). In this test, for each set of parameters the test is repeated two times and the UR5 moving
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speed is 0.1 m/s. The obtained results show that the training algorithm has not converged after
one hundred iterations (Fig. S3A). Considering that on average, each iteration takes a hundred
minutes, the study has not been carried out for more iterations. Instead, some simplifications
have been applied to help the training algorithm to converge. The caudal fin has been set to
produce maximum forward thrust and the pectoral fins have been commanded in a way that they
have symmetric propulsions (Fig. S3B). This is achieved by introducing following relationships:

α1 = α3, α2 = α4, β1 = −β3, β2 = −β4, f1 = f3, f2 = f4, φ1 = φ2 (3)

For each set of parameters,the test is repeated three times while the UR5 moving speed is
set to 0.1 m/s. The obtained results show that all tested gaits have values less than the thrust
achievable by the caudal fin alone. Finally, another case has also been studied to evaluate the
ability of the thrust generation of swimming with the pectoral fins with the caudal fin disabled.
The highest performing gait is only capable of overcoming FIRE’s body drag when the UR5 is
commanded to move the fish at 0.1 m/s speed (Fig. S3C). This result shows that the symmetric
pectoral fins’ propulsion can produce only limited forward thrust in certain circumstances; the
maximum speed achievable is around 0.1 m/s.

5. Conclusion & Future Work

In this paper, we have introduced a robotic fish that can utilize complex gait patterns via two
2-DOF pectoral fins and one caudal fin to swim in extreme environments. This is accomplished
with a new two degree-of-freedom pectoral fin mechanism, whose parallel architecture permits
all actuators to be integrated within the body of the fish, maintaining a more bio-inspired and
lightweight fin design as well as a more streamlined body. We have carried out a comprehensive
series of gait selection studies across all five degrees of freedom via a novel experimental setup
design that uses a robotic arm to simulate water current. The six-dimensional set of forces and
torques generated by the fins’ motion has been used as the criteria for evaluating locomotion
performance across a number of different goals. By parameterizing actuator motion as a set of
sinusoidal functions, a thorough search has been performed using an on-line evolution strategy
to find the best sets of propulsion parameters for different maneuvering objectives.

In addition to the platform design and gait selection, we have trained FIRE for use in
extreme environments. To do so, we have trained the fish in a non-ideal lab setup and then
we have followed up the training by evaluating the top-performing gaits in different real-
world environment. Finally, we have selected the final gait that shows high repeatability in
its performance. We believe that this method has advantage over performing the whole training
in real-world environment, because it avoids extra complexity caused by high perturbation in
real-world environment. In contrast to previous fish-inspired robotic platforms, the approach
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proposed in this paper can be used to train robotic fish for extreme environments in a compact
and efficient lab setup. This method also avoids the extra cost and labor associated with setting
up and running all experiments in a less accessible and more extreme outdoor environment.
In-lab training cannot guarantee good performance in the real-world on its own. Thus, the
proposed training workflow pairs the advantages of using machine learning in a non-ideal lab
setup with real-world validation to find gaits that work well in a variety of environments that
feature disturbances, currents, and reflected waves.

While this training approach has been effective, some challenges should be addressed.
First, due to uncertainties caused by the non-ideal testing environment, data is not always
repeatable. To address this we have repeated the 10 s tests more than one time for each set of
gait parameters. To improve repeatability we also let the water settle between subsequent trials
to minimize the effect of vortices produced by previous trials. Both of these factors increase the
total run time and result in relatively long training procedured that can take a day for parameter
sets with a low number of dimensions (in the range of one to three) and a week for parameter sets
with a high number of dimensions (in the range of seven to ten). Another consideration is that
the training failed to converge within an acceptable time for cases that have parameter sets with
more than ten variables. This has been addressed in current work by introducing constraining
relations between gait’s parameters to reduce the size of parameters’ space. Currently, these
relationships are manually established; future work should use experimental design techniques
in conjunction with machine learning to automate this process.

Although pursuing this data-driven approach in the presence of disturbances is challenging,
this study shows that modern training algorithms such as CMA-ES are capable of finding
sub-optimal gait parameters for robots in non-ideal environments, as long as they are used
in combination with external validation such as that provided by our workflow, as well as by
applying constraints crafted to limit the dimensionality of the search.

Despite the above limitations, the advantages of this training workflow, achieved by
combining the evolution strategy training with our unique experimental setup, have provided us
with the opportunity to explore a variety of different body shapes and scales as well as different
fin mechanisms and attachment strategies. In contrast with prior work, using a robotic arm
instead of a water tunnel to obtain force measurements at different velocities not only keeps the
experimental setup more compact, but facilitates training in a more extreme environment with
higher perturbation which intentionally injects noise into the training, resulting in more robust
gaits.

In order to further automate the optimization of gaits against new trajectory/force goals,
on-board sensors like IMUs and GPS units will need to be integrated into our learning processes;
this will allow learning both in the lab and in the real world. Completely understanding the effect
of each gait parameter on the forces, torques, and velocities generated by the fins requires further
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and more in-depth study that utilizes on-board sensors, more-efficient sampling techniques, and
even more optimized learning techniques, and could lead to online learning strategies within the
targeted environment. Other planned future work includes in-depth study on the inter-influence
of caudal and pectoral fins’ propulsion and an active buoyancy control system that will be added
to the robotic fish to assist the robot to maintain contact with canal surfaces across a variety of
depths, in order to complete tasks like cleaning, maintenance, and inspection. Future work
also includes the control of a swarm of FIREs to accomplish common tasks such as cutting
vegetation and scrubbing canal walls. We believe that the collision-free control of a swarm of
FIREs would be possible due to the high maneuverability of the robot and its slow dynamics.

Appendix .1. FIRE’s Bio-inspiration

As mentioned in the paper, we have been inspired by the flattened body plan of suckermouth
catfish (Plecostomus) in the design of FIRE. Despite the space constraints caused by servos,
swim bladders and electronics, we have designed FIRE’s dimensions to be as close as possible
to the fineness ratio (total length/ maximum height = 6.7-9.0) and flattening ratio (maximum
body length/maximum height = 0.9-2.0) of the Hypostomus plecostomus fish reported in [52].
Our robotic fish has a fineness and flattening ratios of 4.27 and 2.3, respectively.

Another feature of suckermouth catfish pectoral fins that aligns with our goal of interacting
with environment is their role in performing station-holding. Their body shape has enabled them
to maintain position in high currents (known as station-holding); this is a function of the fish’s
body’s drag, lift, effective mass and frictional forces [53, 54]. In suckermouth catfish, pectoral
fins have a large toothed spine and are also used to hook the fish to the substrate and increase
friction for station-holding [54, 55]. According to the study conducted in [54], performing
friction-enhancing behaviors via their large pectoral fin spines and odontodes enable these fish
to increase their critical current speed ( maximum current speed at which a benthic fish is able
to hold station without active swimming [56]) by more than eleven times. Getting inspired
by multi-functionality of this fish pectoral fin, we believe that a passive or 1-DOF pectoral
fin mechanism cannot contribute to reaching our goals. Hence, we have proposed a 2-DOF
mechanism for each pectoral fin to provide the opportunities for performing more complex
tasks using pectoral fins. The pectoral fins are designed so their neutral position mimics the
shape of the sucker-mouth catfish fins in a passive state.
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